Мы поможем решить ваши проблемы с отоплением дома! Задать вопрос

Давление бетона на стенки опалубки расчет

Содержание статьи

Плитный фундамент относится к категории мелкозаглубленных. Он представляет собой монолитную железобетонную плиту, уложенную на подушку.

Нормы расхода бетона на м3

Пропорции приготовления раствора зависят от особенностей используемого материала, а также требований к возводимой конструкции. В таблице приведены основные соотношения для наиболее распространенных марок бетона на основе цемента М400 или плотности цемента М500 (он обладает усредненными характеристиками, применяется в строительства чаще всего).

Следует помнить, что расчетное количество компонентов и воды добавляют не сразу, а постепенно, небольшими порциями. Это позволяет получить однородную пластичную смесь, не содержащую комков и сухих прослоек.

Отмеривать цемент рекомендуется с точностью до 1 кг, остальные компоненты раствора – до 3 кг. Воду добавляют постепенно, ее объем может сильно варьироваться в зависимости от температуры, погодных условий и используемого оборудования.

Как рассчитывается объем бетона для ленточных и плитных фундаментов?

Для начала необходимо сложить длину всех стен конструкции, далее получившийся погонаж умножить на ширину и глубину конструкции. В результате таких несложных вычислений вы получите математический объем конструкции. Далее получившийся объем, Вы должны разделить на коэффициент уплотнения по ГОСТу. Коэффициент уплотнения для бетона с подвижностью П4 составляет 0,97 (при перекачке бетононасосом может доходить до 0,95), а для мелкозернистого бетона (раствора) — 0,93 — 0,95. В итоге у Вас получится необходимый объем бетона, но только при идеальных размерах опалубки и выполненной подготовке.

Например: Вам необходимо рассчитать ленточный четырехстенный фундамент: длина — 6м, ширина — 8м., ширина стенки — 0,3м, глубина 1,2м.

  1. 6 + 6 + 8 + 8 = 28 м.п.
  2. 28 * 0,3 * 1,2 = 10,08 м3
  3. 10,08 / 0,97 ≈ 10,4 м3

В результате вычислений Вы получите требуемый объем смеси с небольшим запасом. Если Вы точно уверены в отсутствии дополнительных потерь объема в конструкции, можете смело использовать вышеуказанную схему расчета. Однако, если например недостаточно уплотнен песок, заливка производится в землю, отсутствует бетонная подготовка, участок имеет неровную форму или используется не профессиональная опалубка, лучше перестраховаться и заказать больший объем смеси. Не забывайте, что при подаче смеси автобетононасосом, в его приемочном бункере остается 0,3 — 0,5 м3 смеси.    

Если Вам необходимо рассчитать плитный фундамент: длина 10м, ширина 12м., высота 0,3м.

  1. 10 * 12 = 120 м2
  2. 120 * 0,3 = 36 м3
  3. 36 / 0,97 ≈ 37,2 м3

Как Вы видите, коэффициенты уплотнения применяются одинаковые и схема расчета аналогична вышеуказанной. Вес одного куба тяжелого бетона составляет 2300 — 2500 тонны, соответственно Вы представляете, какую нагрузку он создает на опалубку при укладке. Таким образом, при расчете необходимо учитывать и этот фактор, например добавить 2 см. к ширине при расчете стен. Все понятно, что простейший фундамент рассчитает практически любой человек, но как же быть с расчетом сложных конструкций?

Для того, чтобы у клиента не возникало сомнений относительно объема поставленной смеси, наш завод предлагает услугу выезд представителя на объект застройки, для расчета количества совместно с заказчиком. То есть — какой объем мы с заказчиком обговорим, за тот он и платит, но бетон поставляем до тех пор, пока конструкцию не зальем полностью.

Разновидность нагрузок

Конструкция фундамента находится под влиянием постоянных и временных нагрузок, значение которых зависит от многих факторов: климатического района застройки, видов грунтов основания, строительных материалов для основных конструкций стен, крыши, перекрытий.

Постоянные нагрузки

К постоянным видам нагрузок относятся:

  • Собственный вес конструкций здания.
  • Расчетные показатели давления грунтов на боковую поверхность ленточного фундамента.
  • Давление от грунтовых вод.

При выполнении расчетов усилия от постоянного веса считаются самым серьезным видом нагрузки.

Временная нагрузка

Конструкция здания может подвергаться периодическим временным нагрузкам, таким как:

  • Снеговая, показатель которой зависит от толщины снежного покрова в каждом конкретном регионе.
  • Ветровая, определяемая по таблице усредненных показателей розы ветров в данной местности.
  • Сейсмическая (для районов с повышенной сейсмичностью).
  • От веса мебели в помещениях и перемещения людей.

Показатели временных нагрузок можно найти в ДБН 2006 «Нагрузки и воздействия» в разделе 6 по таблице 6.2.

Вертикальная нагрузка

Под данным понятием подразумевается суммарная нагрузка, оказываемая на опорные элементы вертикальных опалубочных систем со стороны конструкционных элементов, заливочной смеси и других рабочих факторов. К расчетным компонентам вертикальной нагрузки относят:

  • Суммарный вес комплекса опалубочных элементов. Вес каждой комплектующей части указан в технической документации. При использовании опалубки из дерева масса высчитывается по константам, утвержденным в СНИП: 800 кг/куб.м. – для дерева лиственных пород, 600 кг/ куб.м. – для хвойных сортов древесины.
  • Масса армирующих элементов. Указывается в проектных данных или вычисляется по константе для ж/б конструкций, равной 100 кг/м3 (при отсутствии точных данных).
  • Нагрузка, оказываемая транспортом и живой рабочей силы. Номенклатурное значение данного показателя может отличаться для расчета конкретных элементов опалубки или их комплекса. В данном случае рассматриваются значения в 1,5 кПа и 2,5 кПа соответственно.
  • Масса бетона — высчитывается по фактическому весу компонентов или с использованием номенклатурных данных, для бетонных смесей с щебнем или гравием (2500 кг/ куб.м.).

Допустимая нагрузка на пустотные плиты перекрытия

Допустимая нагрузка на плиты перекрытия пустотные – важнейшая характеристика изделия для строителей и ремонтников. От верного проектирования перекрытия зависит итоговая прочность сооружения. Как читать маркировку, определять допустимый вес и хранить плиты без ущерба устойчивости к нагрузке?

Что означает маркировка плит?

Сортамент плит перекрытия пустотных составлен с учетом их размеров и прочности.

Маркировка начинается с аббревиатуры ПК, то есть «плита круглопустотная», и содержит описание продукции.

Разберем значение цифр на примере названия ПК-30-12-8:

  • 30 — длина пустотной плиты перекрытия в дециметрах
  • 12 — ширина изделия в дм
  • 8 — максимальная нагрузка на 1 дм2 в кг, то есть 800 кг на м2, в которые входит и вес самой плиты

В маркировке цифры округляются, в приведенном примере реальная длина плит перекрытия пустотных составит около 1180 см, а ширина – 1190 см.

Указанные параметры нагрузки используются чаще всего, однако возможны и другие значения – от 500 до 1500 кг на м2. В планировке жилых и офисных помещений стандартная нагрузка на плиты перекрытия пустотные 800 кг/м2, как правило, отвечает эксплуатационным требованиям.

Как рассчитывать допустимую нагрузку

Для проверки, выдержит ли выбранная плита внутренние элементы, вычитают из проектных значений разные виды нагрузок:

  • собственную массу изделия на м2
  • оформление напольного покрытия (стяжки, утеплители, декор)
  • привнесенную статическую нагрузку (мебель, техника)
  • динамическую нагрузку (люди, животные)

Сортамент пустотных плит перекрытия содержит множество изделий, нужно рассчитать оптимальное заполнение проема с учетом массы плит и нагрузок.

Пример расчета веса внутренней стены:

800 кг/м2 — 300 кг/м2 (вес конкретной плиты по ГОСТу) — 150 кг/м2 (максимальный вес стяжки, утеплителя и напольного покрытия по СНиП) – 150 кг/м2 (минимальные нормы на привнесенную статическую и динамическую нагрузку) — 200 кг/м2.

Итоговая цифра означает максимально допустимый вес планируемых конструкций. Располагать их следует ближе к торцам плит. Важно помнить, что постоянные статические нагрузки скапливаются и могут привести к прогибу изделия, поэтому лучше не достигать максимума.

Правильное хранение плит перекрытия

Чтобы не допустить уменьшения проектной прочности пустотных плит еще до монтажа, следует выполнять основные правила их складирования:

  • Укладываются петлями вверх на твердую ровную поверхность, лучше асфальт или щебень, без контакта с землей, на перегородки от 15 см высотой.
  • Между плитами в районе петель строго друг под другом – деревянные бруски толщиной 2,5-3 см.
  • Высота штабеля – не более 2,5 м
  • Сверху накрыть водонепроницаемой пленкой или рубероидом

Точное соблюдение условий хранения плит перекрытия и грамотный монтаж позволят легко выйти на расчетные показатели нагрузок.

Особенности панелей перекрытия с пустотами

Способность плит противостоять нагрузкам зависит от их конструкции и марки цемента, идущего на изготовление. К примеру, если плита изготовлена из цемента марки М500, то готовое изделие может удерживать точечное приложение веса в 500 кг на квадратный сантиметр. Это предельная кратковременная нагрузка на плиту перекрытия пустотную, тогда как постоянная нагрузка намного меньше этого значения.

Однако эти данные были бы верны только для плит, изготовленных из бетона без армирования. На самом деле их несущая способность гораздо выше за счет усиливающего стального каркаса из качественной арматуры.

Схема армирования ж/б плиты

Источник

Армирование плит производится во всех направлениях с усилением торцов, опирающихся на стены, двойным поясом. Это необходимо для увеличения несущей способности кромок, на которые опираются стены верхних этажей и конструкция кровли.

Это важно! Если железобетонными плитами перекрывается здание, построенное из легких ячеистых бетонов или керамических блоков, по верху несущих стен устраивают армопояс.

Тяжелые перекрытия можно укладывать только на монолитный ж/б пояс

Источник

Виды плит для устройства перекрытий

Прежде чем пытаться определить, какую нагрузку выдерживает плита перекрытия пустотные 6 метров или другой длины, стоит разобраться в разновидностях таких плит. Они представляют собой плоские панели с продольными внутренними полостями круглого, овального или восьмиугольного сечения.

Помимо них заводы ЖБИ выпускают и монолитные ребристые и П-образные плиты. Отсутствие в них отверстий повышает несущую способность до 2000-3000 кг/м2, но большой вес таких изделий оказывает серьезную нагрузку на фундамент и стены зданий. Поэтому в жилищном, и особенно частном домостроении предпочтение отдают пустотным плитам. Их дополнительными достоинствами являются лучшая шумоизоляция и возможность скрытой прокладки коммуникаций в пустотных каналах.

Между собой они отличаются габаритами, формой и размером пустот. Самыми распространенными являются панели с полостями круглого сечения, они имеют обозначение ПК, а предшествующая этой аббревиатуре цифра указывает на диаметр поперечного сечения каналов.

  • 1ПК – диаметр цилиндрических пустот равен 15,9 см.
  • 2ПК – 14 см.
  • 3ПК – 12,7 см.
  • 7ПК – 11,4 см.

У плит могут быть разные внешние габариты и размеры пустот

Источник

В частном и малоэтажном строительстве рекомендуется применять плиты перекрытия 7ПК с уменьшенным сечением пустот.

Аббревиатура ПБ для пустотных плит указывает на метод её формирования безопалубочным способом.

Внешние габаритные размеры плиты регламентируются стандартами. Существует множество типоразмеров, отличающихся:

Особенности панелей перекрытия с пустотами
  • толщиной (от 160 до 400 мм);
  • длиной (от 2,4 до 15,5 м);
  • шириной (от 1,0 до 3,6 м).

Эти данные, как и расчетная нагрузка на плиту перекрытия, записаны в маркировке изделий.

Как расшифровать маркировку

Маркировка железобетонных плит отражает все параметры, необходимые для правильного подбора изделий. Она содержит в себе указание на тип плиты, её округленную длину и ширину в дециметрах, и предельную нагрузку, выраженную в сотнях килограмм на квадратный метр.

Пример расшифровки маркировки плит ПБ

Источник

Приведем ещё один пример маркировки с разбором каждого обозначения для плиты

Особенности панелей перекрытия с пустотами
  • 1ПК – пустотная плита перекрытия с круглыми отверстиями сечением 15,9 см;
  • 40 – длина 400 см (округленная);
  • 12 – ширина 120 см (округленная);
  • 8 – предельная нагрузка, выраженная в кг на 1 дм2 (или 800 кг/м2).

Соответственно, если третье число в маркировке 10, то показатель нагрузки примерно равен 1000 кг/м2, если 12 – 1250 кг/м2 и т.д. Точные значения этих показателей и размеров до миллиметров и граммов указаны в производственной документации и специальных справочниках, но расчет нагрузки на плиту перекрытия можно вести и по округленным цифрам.

Согласно СНиП, стандартная нагрузка для пустотных плит может быть не более 800 кг/м2, этого вполне достаточно для жилых зданий. Плиты с более высокими показателями использовать нецелесообразно из-за большого веса и увеличения давления на фундамент.

Особенности расчета толщины фундаментной плиты

В расчете толщины плитного фундамента учитываются следующие параметры конструкции:

  • расстояние (зазор) между арматурными сетками;
  • толщина слоя бетона над арматурой сеткой – верхним и нижним поясами;
  • толщина арматурных стержней.

Оптимальной толщиной монолитной плиты фундамента для большинства построек принято считать 200-300 мм. Однако на практике на этот параметр оказывает весьма существенное влияние состав грунта и равномерность залегания пород на участке застройки.

Да и габариты надземной части имеют большое значение. Чем сильнее разнесены несущие стены, тем толще должна быть монолитная плита.

Освоить методику проще на примере расчета плитного фундамента.

Особенности расчета толщины фундаментной плиты

Определение оптимальной площади плиты

Необходимая площадь монолита зависит от величины суммарной нагрузки и расчетного сопротивления грунта.

Для обеспечения большей надежности в формулу расчета вводится коэффициент надежности по нагрузке.

Имея на руках все необходимые величины, площадь можно рассчитать по формуле:

S > Kн x F/Kp x R, где

Kн – коэффициент надежности фундамента по нагрузке (1,2);

F – полная нагрузка на плиту: включает в себя общий вес здания, оборудования, людей, мебели, а также ветровой и снеговой нагрузок;

Кр – коэффициент условий работ: зависит от типа грунта, служащего основанием для фундамента. Принимается в пределах 0,7-1,05;

R – расчетное сопротивление грунта: зависит от его типа и принимается по таблицам, содержащимся в СНиП или строительных справочниках.

Особенности расчета толщины фундаментной плиты

Для примера приведем некоторые величины R, кгс/см2:

  • 0,35 – для мелких и пылеватых плотных песков, суглинков – пластичных и твердых;
  • 0,5 – для твердых и пластичных супесей, твердых глин;
  • 0,25 – для песков мелких средней плотности и пластичных глин.

Рассчитав общую нагрузку и площадь, можно приступать к определению давления на 1 кв. см площади плиты. Для этого надо просто поделить первую величину на вторую. Полученный результат сравниваем с табличными данными.

Приведем пример:

  • планируется построить здание общим весом 250 тонн;
  • тип грунта на строительной площадке – суглинок пластичный (R = 0,35 кгс/кв. см);
  • площадь плиты – 100 кв. м (на основании расчета по формуле, приведенной выше).

На такой площади грунт может выдержать 350 тонн нагрузки. Разница между общей нагрузкой от здания и допустимой составит 100 тонн. Это и есть максимальный вес плиты фундамента которую выдержит грунт.

Переводим эту разницу в кубы (объем плиты), исходя из того, что один кубометр железобетона весит в среднем 2,5 тонны и получаем 100 : 2,5 = 40 куб. м.

Если объем разделить на площадь, то в результате получится искомая максимальная толщина плиты:

40 : 100 = 0,4 м или 40 см.

Особенности расчета толщины фундаментной плиты

Можно сказать, что расчет толщины плитного фундамента завершен. Мы получили максимально допустимую толщину монолита, превышать которую не позволят характеристики грунта.

Но затраты на строительство фундамента можно существенно уменьшить, если принять во внимание такой параметр, как прочность на сжатие бетона.

Он зависит от марки материала. Например, у бетона В22,5 он составляет 22,5 кг/кв. см. Чтобы узнать, какая площадь бетонной основы сможет выдержать нагрузку в 250 тонн, надо разделить ее на 22,5.

250/22,5 = 11,1 кв. м.

Расчёт фундамента под колонну

Особенности разных видов фундамента

Сбор нагрузок под колонну

Делаем сбор нагрузок на фундамент под колонну в табличной форме.

Коэффициент надежности по нагрузке,

на единицу площади,

от грузовой площади, кН

От бетонного пола по перекрытию

Кратковременная на 1 м2 перекрытия (табл.3 /7/)

Расчет отдельно стоящего фундамента

Вертикальная нагрузка на уровне спланированной отметки земли N=251,58 кН, Nn=211,37 кН,

Условное расчетное сопротивление основания, сложенного гравийно-галечниковым грунтом, определяем по табл. 45/16/ кПа.

Вес единицы объема фундамента на его обрезах гmt=18 кН/м 3 .

Бетон тяжелый класса В 20, Rbt=0,9МП, Rb=11,5 МПа, гb2=1,

Арматура класса А-II, Rs=280 МПа.

Рис. 3.3. Заложение отдельно стоящего фундамента

Грунт под подошвой фундамента – песчано-гравийная смесь. Т.о., в соответствии с табл.2. СНиП , глубина заложения фундамента не зависит от .

Учитывая наличие подвала, принимаем глубину заложения фундамента, равную 3,3м.

Предварительные размеры фундамента

Предварительная площадь фундамента:

– суммарная расчетная нагрузка по обрезу фундамента, кН,

– расчетное сопротивление грунта основания, кПа,

– средний удельный вес грунта и материала фундамента, кН/м 3 ,

– глубина заложения фундамента, м.

Предварительная ширина фундамента:

где и -коэффициенты условий работы.

k-коэффициент, принимаемый равным 1,

-коэффициенты, принимаемые по табл. 4,

-коэффициент, принимаемый равным 1, т.к. b 10 м,

b-ширина подошвы фундамента, м,

-осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента кН/м 3 (тс/м 3 ),

-то же, залегающих выше подошвы,

-расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа (тс/м 2 ),

d1-глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала

Размеры фундамента при R=608,02 кПа

Принимаем , исходя из конструктивных соображений.

Рис. 3.4. Конструирование отдельно стоящего фундамента

Вес грунта на обрезах фундамента

Среднее напряжение по подошве

Условия выполняются, размеры фундамента принимаются.

Расчет свайного фундамента

– глубина заложения ростверка

– принимаем глубину заложения 3,4 м, исходя из конструктивных соображений.

– за несущий слой принимаем песчано-гравийную смесь.

– длина сваи 3 м, сечение 30Ч30

Рис.3.5. Заложение свайного фундамента

Определение несущей способности сваи:

где – коэффициент условий работы сваи в грунте, принимаемый = 1,

R= 9295 кПа- расчетное сопротивление грунта под нижним концом сваи (Н =6,1 м), принимаемое по табл.1 СНиП ,

при Н=5м, R=8800 кПа,

при Н=7м, R=9700 кПа,

– площадь опирания сваи на грунт, м 2 ,

– наружный периметр поперечного сечения сваи, м,

– расчетные сопротивления слоев грунта основания по боковой поверхности сваи, принимаемые по табл.2 СНиП ,

hi – толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м,

и – коэффициенты условий работы.

Допустимая нагрузка на сваю

где =1,4 – коэффициент надежности.

Несущая способность сваи по материалу:

Расчет продолжаем по наименьшей несущей способности

Среднее условное давление под подошвой:

Вес ростверка и грунта:

Требуемое количество свай:

Рис. 3.6. Конструирование ростверка

Вес грунта на обрезах

Нагрузка на сваю в ростверке

Следовательно, использование свайного фундамента является нецелесообразным, т. к даже при использовании минимального количества свай возникает значительное недонапряжение.

Исходя из этого, принимаем отдельно стоящий монолитный фундамент под колонну.

Расчет фундаментов под колонну Расчет фундамента под колонну Сбор нагрузок под колонну Делаем сбор нагрузок на фундамент под колонну в табличной форме. Коэффициент надежности по нагрузке, на единицу площади, от

Калькуляция материала для фундамента и стен

Расчет потребности материала для ленточного и плитного фундамента производится по разной методике.

Так, калькулятор опалубки плиты довольно прост. Необходимо замерить ее периметр, умножить на высоту с запасом 5 см и на толщину доски. Для создания щитов целесообразно использовать пиломатериал толщиной 5 см и более. Этого вполне достаточно, чтобы выдержать давление многотонной массы раствора.

Пример калькуляции опалубки для бетонной плиты формата 800×1200×30 см:

  • периметр — 800+800+1200+1200=4000 см (40 м);
  • толщина доски — 0,05 м;
  • высота щитов — 2×20 см = 0,4 м.

Все, что остается — все это умножить. 40×0,05×0,4 = 0,8 м³.

Следующим этапом является подсчет бруса для обустройства подпорок. При высоте опалубки в 40 см вполне достаточно устанавливать подпорки каждые 70 см. Делим периметр (40 м) на расстояние между подпорками (0,7 м) и получаем 58 единиц. Длина каждой определяется путем извлечения корня из суммы катетов (40 см), которые образуют щит и грунт. Результат равняется 55 см. Всего необходимо приобрести 32 п.м. бруса сечением 5×5 см. С учетом обрезков лучше приобрести 36 п.м. этого пиломатериала (0,1 м³).

Саморезы приобретаются поштучно. Для гарантированного сцепления распорки со щитом необходимо 2 метиза. Итого — 116 единиц. Если в ход пойдут гвозди, то достаточно 1 кг этого крепежа.

Калькуляция материала для фундамента и стен

Несколько по-другому рассчитывается потребность деталей для ленточного фундамента.

Первое, что нужно сделать — измерить его периметр по внешнему краю. Полученные данные умножаются на 2 и на высоту щитов. При этом размер щита нужно считать кратным ширине доски.

Пример калькуляции ленточного фундамента глубиной 80 см:

  • периметр — (1000+1000+1000+1000)х2=8000 см (80 м);
  • толщина доски — 0,05 м;
  • высота щитов — 5×20 см=1,0 м.

При определении высоты щитов был взят запас 20 см, чтобы исключить перелив раствора.

Необходимость в досках определяется умножением всех полученных данных: 80×0,05×1=4 м³.

Подпорки будут стоять с двух сторон с интервалом 50 см. Исходя из этого, необходимо 160 брусков длиной по 120 см каждый. Это — 200 п.м. бруса. Добавим к этим данным 80 распорок, которые будут поставлены между щитами. При ширине фундамента 30 см получаем еще 24 п.м. бруса. Всего его потребуется 224 п.м. или м3.

Нагрузка на плиты перекрытия СНиП

Максимальная нагрузка на пустотные плиты перекрытия может быть рассчитана даже тем, кто никогда ранее не сталкивался со строительством и подобными задачами в целом. Здесь работает простая арифметика, на требующая глубоких знаний ни в строительстве, ни в высшей математике.

В первую очередь необходимо определить, с какой плитой мы имеет дело.

Какую нагрузку могут выдерживать пустотные плиты перекрытия

Здесь сильно упрощают жизнь обозначения на самой плите.

Так, маркировка железобетонной плиты начинается с букв ПК, что значит «плита перекрытия», после чего идет число, обозначающее длину плиты, выраженную в дециметрах; после чего идет аналогичное изображение ширины плиты.

  Но нас интересует последнее число, обозначающее количество килограмм, которое может выдержать 1 квадратный дециметр плиты, включая ее собственный вес.

Например, у нас есть плита ПК-12-10-8. Она имеет длину в 1,2 метра, ширину в один метр, прочность, способную выдержать 8 килограмм на квадратный дециметр.

То есть один квадратный метр способен выдержать в сто раз больше, то есть 800 килограмм. К слову, такая максимальная нагрузка характерна на пустотные плиты перекрытия для подавляющего большинства изделий.

Однако не стоит забывать, что сюда входит с вес самой плиты, которую мы еще не рассчитали.

Вес железобетонной плиты легко взять из ГОСТа. Так, популярная железобетонная плита ПК-60-15-8 согласно ГОСТ 3561-91 весит 2850 килограмм. Согласно маркировке, плита имеет стороны в 6 и 1,5 метра, то есть площадь в 9 квадратных метров.

Разделив вес на площадь, получаем, что каждый квадратный метр плиты весит около 317 килограмм. Так как практически все железобетонные плиты имеют прочность в 800 килограмм на квадратный метр, а сама плита весит 317 килограмм каждый кв.

метр, то полезная прочность равняется 800-317=483 килограмма.

Кроме того, из этой суммы необходимо вычесть массу бетонных и цементных стяжек, напольных покрытий.

Как правило, строительные и отделочные материалы дают прирост в весе еще на 150 килограмм каждый квадратный метр. В результате для бытовых нужд остается 483-150=333 килограмма на квадратный метр.

Эта прочность позволяет расположить перегородки и декоративные элементы, мебель, животных и людей.

:

Нагрузка на плиты перекрытия СНиП

Допустимая нагрузка на плиту перекрытия максимальная

При возведении любых строительных конструкций, многоэтажных жилых домов, частных строений, спортивных комплексов или стадионов, наиболее практичным, надежным и востребованным материалом для сооружения межэтажных (несущих конструкций) перекрытий являются плиты перекрытия.

Существует множество разновидностей плит перекрытия, которые отличаются между собой по качественным, эксплуатационным параметрам, размеру, уровню максимальной нагрузки и многим другим аспектам. От их веса зависит устойчивость и жесткость любого строения.

Все технические характеристики и параметры материала, в том числе и допустимая нагрузка на плиту перекрытия, должны быть указаны на маркировке изделий.

Чтобы избежать ошибок при выборе, перед приобретением строительного материала очень важно внимательно ознакомится с маркировкой, при этом наиболее важным критерием является индекс допустимой статической и динамической нагрузки.

Маркировка плит перекрытия

Как уже было отмечено, плиты, которые изготовлены в заводских условиях с соблюдением технологического процесса, должны в обязательном порядке иметь маркировку (закодированную информацию).

Стандартная маркировка имеет следующий вид – ПК60-12-9, где:

  • ПК обозначает тип плиты.
  • 60 – параметр длины в дециметрах.
  • 12 – значение ширины.
  • 8 – индекс допустимой нагрузки, а именно, сколько килограммов способен выдержать 1м2 плиты перекрытия, включая ее собственную массу.

Стоит отметить, что практически для всех плит перекрытия стандартный индекс нагрузки равен 800 кг на метр квадратный.

Также в продаже можно найти изделия, которые способны выдерживать нагрузку в 1000 и более кг. Их индекс равен 10.2 и 12.5. Значение высоты у всех плит всегда одинаково и равно 22 см.

Длина плит может быть от до 9.7 метров, ширина – от до 3.5 м.

Классификация и разновидности плит перекрытия

Плиты перекрытия имеют высокие качественные и эксплуатационные параметры, изготавливаются только в заводских условиях с соблюдением температурного режима и времени, которое необходимо для полного их затвердения. Плиты перекрытия классифицируют на:

  1. 1. Пустотные.
  2. 2. Многопустотные (облегченные).
  3. 3. Полнотелые.
  4. 4. Монолитные – самые прочные из всех существующих вариантов.
  5. 5. Ребристые, которые могут быть с проемами или сплошными, отличаются своеобразным рельефным профилем, что позволяет выдерживать большие нагрузки на изгиб.

Алгоритм расчета, основанный на несущей способности почвы

Когда определены габариты фундаментной плиты, можно осуществить расчет этой конструкции исходя из несущей грунтовой способности. Цель этой операции – оценка состояния грунта и его способности выдерживать суммарный вес всех стен перекрытия и прочих элементов внутри здания.

Пример: сильное давление на почву приведет к чрезмерной осадке фундаментной плиты и смещению слоев грунта. Все это в комплексе станет причиной развития катастрофических последствий.

Площадь фундамента считается надежной, если она превышает следующее условие:

в котором S – подошва основания дома в кв. см;

Kн – коэффициент, определяющий надежность опоры (принимается равным 1,2);

F – суммарная масса всех плит перекрытия (включая эксплуатационные нагрузки) на фундамент в кг;

Kр – коэффициент, который определяет условия работ;

R – условное значение расчетного почвенного сопротивления в кг/

Армирование монолитного основания

Условия работы на каждом грунте принимают различное на коэффициент Кр оказывает влияние тип возводимого здания. К примеру, необходимо построить тяжелый дом на почве, основа которой – пластичная глина. Кр в этом случае будет равен 1. Слабоглинистые и мелкопесчаные почвы – Кр равняется 1,2. Легкая постройка на крупнопесчаной почве определяет значение Кр как 1,4. Данные значения коэффициента, определяющего условия строительства, можно взять из специальных таблиц. Найденная цифра подставляется в вышеприведенный расчет.

Таблица 2. Значения коэффициентов, определяющих условия работ при строительстве фундамента на почвах с органическими компонентами

Временные нагрузки

О снеге, который также относится к временным нагрузкам поговорим ниже отдельно. Другие временные воздействия на фундамент необходимо учитывать при проектировании. Их значения берутся из нормативных документов. Нет необходимости высчитывать вес каждого предмета мебели и распределять его по площади. Для жилых зданий в среднем можно принимать 150 кг/м2 равномерно распределенной нагрузки. Для чердаков принимают 70 кг/м2. Также учитывают коэффициенты надежности равный 1,3. То есть для дома в 150 м2 с чердаком в 20 м2 общее значение составляет 26000·1,3 = 33800 кг

1 звезда2 звезды3 звезды4 звезды5 звезд (голосов пока нет)
Загрузка...